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Abstract

Purpose – The purpose of this paper is to propose a Tau method for solving nonlinear Blasius
equation which is a partial differential equation on a flat plate.
Design/methodology/approach – The operational matrices of derivative and product of modified
generalized Laguerre functions are presented. These matrices together with the Tau method are then
utilized to reduce the solution of the Blasius equation to the solution of a system of nonlinear equations.
Findings – The paper presents the comparison of this work with some well-known results and shows
that the present solution is highly accurate.
Originality/value – This paper demonstrates solving of the nonlinear Blasius equation with an efficient
method.
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1. Introduction
Recently, spectral methods have been successfully applied in the approximation of
boundary value problems defined in unbounded domains. We can apply different
approaches using spectral methods to solve problems in semi-infinite domains.

The first approach is using Laguerre polynomials and Laguerre functions (Guo
and Shen, 2000; Maday et al., 1985; Shen, 2000; Siyyam, 2001; Taghavi et al., 2009). Guo
and Shen (2000) suggested a Laguerre-Galerkin method for the Burgers equation and
Benjamin-Bona-Mahony equation on a semi-infinite interval. It is shown that the
Laguerre-Galerkin approximations are convergent on a semi-infinite interval with spectral
accuracy. Shen (2000) proposed spectral methods using Laguerre functions and analyzed
elliptic equations on regular unbounded domains. In Shen (2000) it is shown that spectral-
Galerkin approximations based on Laguerre functions are stable and convergent with
spectral accuracy in the Sobolev spaces. Maday et al. (1985) proposed a Laguerre type
spectral method for solving partial differential equations. Siyyam (2001) applied two
numerical methods for solving initial value problem using the Laguerre Tau method.

The current issue and full text archive of this journal is available at
www.emeraldinsight.com/0961-5539.htm
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The second approach is reformulating the original problem in semi-infinite domain
to a singular problem in bounded domain by variable transformation and then using
the Jacobi polynomials to approximate the resulting singular problem (Guo et al., 2005).

The third approach is replacing the semi-infinite domain with interval [0, K] by
choosing K, sufficiently large. This method is named as the domain truncation (Boyd,
2001).

The fourth approach of spectral method is based on rational orthogonal functions.
Boyd (1987) defined a new spectral basis, named rational Chebyshev functions on the
semi-infinite interval, by mapping to the Chebyshev polynomials. Guo et al. (2000)
introduced a new set of rational Legendre functions which is mutually orthogonal in L2(0,
þ1). They applied a spectral scheme using the rational Legendre functions for solving
the Korteweg-de Vries equation on the half line. Boyd et al. (2003) applied pseudospectral
methods on a semi-infinite interval and compared rational Chebyshev, Laguerre, and
mapped Fourier sine. Parand and Razzaghi (2004a, b, c) applied the spectral method to
solve nonlinear ordinary differential equations on semi-infinite intervals. Their approach
was based on a rational Tau method. They obtained the operational matrices of
derivative and product of rational Chebyshev and Legendre functions and then applied
these matrices together with the Tau method to reduce the solution of these problems to
the solution of a system of algebraic equations. The Tau method was invented by
Lanczos (1956) in 1938. In the current paper, our main aim is to employ the Tau method
(Dehghan and Saadatmandi, 2006; Saadatmandi and Dehghan, 2008). The method is
based on expanding the required approximate solution as the elements of a complete set
of orthogonal functions. In the Tau method (Saadatmandi and Dehghan, 2007) unlike the
Galerkin approximation, the expansion functions are not required to satisfy the
boundary constraint individually (Canuto et al., 1988).

The sections of this paper are organized as follows: in section 2, we describe the
Blasius equation and transform it to a nonlinear ordinary differential equation and then
explain some methods used previously to solve Blasius equation. In section 3, we
describe the formulation of modified generalized Laguerre (MGL) functions required for
our subsequent development. Section 4 summarizes the application of the MGL functions
Tau method to the solution of nonlinear ordinary differential equation (ODE) for the
Blasius equations. The operational matrices of the derivative and the product of MGL
functions are derived in section 4. These matrices together with the Tau method are then
utilized to evaluate the solution to the Blasius equation. As a result a set of nonlinear
algebraic equations is formed, and the solution of the considered ODE is introduced. In
this section, we use MGL functions to solve the Blasius equation and then compare our
solutions with some well-known results, comparisons show that the present solutions are
accurate. The conclusions are described in the final section, that is, Section 5.

2. Blasius equation
A great deal of interest has been focused on the steady flow of viscous incompressible
fluids. Keulegen (1994) investigated the case of two parallel streams, where the upper
stream was moving and the lower one was at rest. An approximate solution has been
obtained for this model. Lock (1951) studied two cases, where the lower stream was at
rest as well as when it was in motion. Potter (1951) extended the study to two fluids of
different viscosities and densities, where both fluids were moving co-current with
different velocities. The velocity distribution in the boundary layers is well addressed
in Potter (1957). Recently, Abu-Sitta (1994) worked on a differential equation of mixing
layer that occurs in Blasius equation. The existence of a solution for this model is
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successfully addressed and established in Abu-Sitta (1994) by using the technique of
Weyl (1942). A broad class of analytical and numerical solutions in Abu-Sitta (1994),
Ahmad and Al-Barakati (2009), Belhachmi et al. (2000), Datta (2003), Fang et al. (2006),
Kuiken (1981a, b), Sweeney and Finaly (2007), Weyl (1942), Yu and Chen (1998) were
used to handle this problem. It is well known that the Blasius equation is the most
important of all boundary-layer equations in fluid mechanics. Many different but
related equations have been derived for a multitude of fluid-mechanical situations, for
instance, the Falkner-Skan equation (Belhachmi et al., 2000). Taking into account the
thermal radiation term in the energy equation, the governing equations of motion and
heat transfer for the classical Blasius flat plate flow problem can be summarized by the
following boundary value problem (Howarth, 1938; Raptis et al., 2004):

@u

@x
þ @v

@y
¼ 0; ð1Þ

u
@u

@x
þ v

@v

@y
¼ � @

2u

@y2
; ð2Þ

u
@T

@x
þ v

@T

@y
¼ k

�cP

@2T

@y2
� 1

�cP

@qr

@y
: ð3Þ

The boundary conditions for the velocity field are:

uðx; 0Þ ¼ vðx; 0Þ ¼ 0; uð0; yÞ ¼ U1; uðx;1Þ ¼ U1:

The thermal boundary conditions for the equation of energy equation (3) are:

Tðx; 0Þ ¼ Tw; Tð0; yÞ ¼ T1; Tðx;1Þ ¼ T1:

Here u and v are (Howarth, 1938; Raptis et al., 2004) the velocity components along the
flow direction (x-direction) and normal to flow direction (y-direction), � is the kinematic
viscosity, k is the thermal conductivity, cP is the specific heat of the fluid at a constant
pressure, � is the density, qr is the radiative heat flux, T is the temperature across the
thermal boundary layer, Tw is a constant temperature of the wall, T1 is a constant
temperature of ambient fluid (T1 > Tw) and U1 is a constant free stream velocity. It is
assumed that the viscous dissipation is neglected, the physical properties of the fluid
are constant, and the Boussinesq and boundary-layer approximations are valid.
Bataller (2008), Magyari (2008), and Raptis et al. (2004) introduced a similarity variable
� and a dimensionless stream function f(�) as:

� ¼ y

ffiffiffiffiffiffiffiffi
U1
vx

r
¼ y

x

ffiffiffiffiffiffiffi
Rex

p
; ð4Þ

u

U1
¼ f 0; v ¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
U1v

x

r
ð�f 0 � f Þ; ð5Þ

where a prime denotes differentiation with respect to � and Rex is the local Reynolds
number ð¼ U1x=vÞ, and defined the nondimensional temperature �(�) and the Prandtl
number Pr as:
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�ð�Þ ¼ T � Tw

T1 � Tw
; Pr ¼ v

�cP

k
; ð6Þ

to transform the nonlinear partial differential equations (1)-(3) to the following
nonlinear ordinary differential equation.

f 000 þ 1

2
ff 00 ¼ 0; ð7Þ

�00 þ Prk0

2
f �0 ¼ 0: ð8Þ

It is worth mentioning here that when k0 ¼ 1, the thermal radiation’s effect is not
considered. The transformed boundary conditions for the momentum equation (7) are:

f ð0Þ ¼ f 0ð0Þ ¼ 0; f 0ð1Þ ¼ 1: ð9Þ

The transformed thermal boundary conditions for the energy equation (8) are:

�ð0Þ ¼ 0; �ð1Þ ¼ 1: ð10Þ

Realize that the momentum equation (7) is uncoupled from the energy equation (8)
because the physical properties of the fluid are constant. Note that by replacing � with
f 0 and choosing k0 so that Prk0 ¼ 1, the energy equation (8) and momentum equation
(7) are equivalent. So by solving one of these equations we can obtain the other solution
of the equation (Bataller, 2008; Magyari, 2008; Raptis et al., 2004).

Here, we consider equation (7) which is the well-known Blasius equation which
appears when studying a laminar boundary-layer problem for Newtonian fluids. Such
a flow is usually called the boundary-layer flow, since the viscous effects are limited to
a thin layer near the flat plate surface. Blasius (1908) solved the equation by using a
series expansions method and found the following solution for the problem:

f ð�Þ ¼
X1
k¼0

� 1

2

k
 !

Ak�
kþ1

ð3kþ 2Þ! �
3kþ2; ð11Þ

where A0 ¼ A1 ¼ 1 and,

Ak ¼
Xk�1

r¼0

3k� 1
3r

� �
ArAk�r�1; k � 2:

In equation (11), � denotes the unknown f 00ð0Þ. In spite of the presence of (3k þ 2)! in the
denominator, the above series converges only within a finite interval [0, �0] where
�0 � 1:8894=�.

In the recent years, the study of the steady flow of viscous incompressible fluid has
gained considerable interest because of its extensive engineering applications. Since
the pioneering work of Howarth (1935) various aspects of the problem have been
investigated by many authors. Squire (1959) used generalized Gauss-Laguerre
quadrature to boundary-layer problems.
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Liua and Chang (2008) developed a new numerical technique, they transformed the
governing equation into a nonlinear second-order boundary value problem by a new
transformation technique, and then solved it by the Lie-group shooting method. Wang
(2004) employed the Adomian decomposition method (ADM) to solve numerically the
famous Blasius equation. Hashim (2006) corrected the numerical solution of Wang and
presented an improved numerical solution using the ADM – Pade Dehghan et al. (2009)
approach. Wazwaz (2007) employed the variational iteration method (Dehghan and
Shakeri, 2008) for a reliable treatment of two forms of the third-order nonlinear Blasius
equation. He showed that the series solution is obtained without restrictions on the
nonlinearity behavior. He combined the obtained series solution with the diagonal Pade
approximants to handle the boundary condition at infinity for only one of these forms.

Wazwaz also used the modified decomposition method and Pade approximants for
these equations. Liao (1999) used homotopy analysis method (HAM) to solve Blasius
equation. Pahlavan and Boroujeni (2008) proposed a simple approach using HAM to
obtain accurate analytical solution of viscous fluid flow over a flat plate. He (1998)
approximated an analytical solution which was obtained with variational iteration
method. The comparison with Howarth’s numerical solution reveals that the proposed
method is accurate. Tajvidi et al. (1999) used modified rational Legendre Tau method to
solve Blasius equation. Lin (1999) obtained an approximate analytical solution of
Blasius equation by the parameter iteration method.

Lastly Boyd (1999), calculated several numerical constants, such as the second
derivative of Blasius equation at the origin and the two parameters of the linear
asymptotic approximation to it, to at least 11 digits. Although the Blasius function is
unbounded, Boyd nevertheless derive an expansion in rational Chebyshev functions TLj
which converges exponentially fast with the truncation, and tabulate enough coefficients
to compute it and its derivatives to about nine decimal places for all positive real x. The
power series of f has a finite radius of convergence, but the Euler-accelerated expansion is
apparently convergent for all real x. Boyd also showed that the singularities, which are
first-order poles to lowest order, have an infinite series of cosine-of-a-logarithm corrections.
Last, chart Boyd (1999) the behavior of f in the complex plane and conjecture that all
singularities lie within three narrow sectors. Boyd (2008) also used this function to
illustrate several important themes. He gave a list of interesting projects for
undergraduates and another list of challenging issues for researchers and mathematicians.

3. Properties of the MGL functions
This section is devoted to the introduction of the basic notions and working tools
concerning orthogonal MGL functions. More specifically, we presented some properties
of the MGL functions.

3.1 The MGL functions
The Laguerre approximation has been widely used for numerical solutions of
differential equations on infinite intervals. L�n(x) (generalized Laguerre polynomial) is
the nth eigenfunction of the Sturm-Liouville problem (Bayin, 2006; Coulaud et al., 1990;
Guo and Shen, 2000):

x
d2

dx2
L�n ðxÞ þ ð�þ 1� xÞ d

dx
L�n ðxÞ þ nL�n ðxÞ ¼ 0;

x 2 I ¼ ½0;1Þ; n ¼ 0; 1; 2; . . . :
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The generalized Laguerre polynomials are defined with the following recurrence formula:

L�0 ðxÞ ¼ 1; L�1 ðxÞ ¼ 1þ �� x;

nL�n ðxÞ ¼ ð2n� 1þ �� xÞL�n�1ðxÞ � ðnþ �� 1ÞL�n�2ðxÞ;

these are orthogonal polynomials for the weight function w� ¼ xae�x. The generalized
Laguerre polynomials satisfy the following relation:

@xL
�
n ðxÞ ¼ �

Xn�1

k¼0

L�k ðxÞ:
ð12Þ

We define MGL functions �j as follows:

�jðxÞ ¼ expð�x=ð2LÞÞL�j ðx=LÞ; L > 0:

ð13Þ

Where � ¼ 0.5, 0.8, 1, 1.3, 1.5, this system is an orthogonal basis (Gasper et al., 1995;
Taseli, 1996) with the weight function wðxÞ ¼ x=L and orthogonality property:

h�n; �miwL
¼ �ðnþ 2Þ

L2n!

� �
	nm;

where 	nm is the Kronecker function. Boyd (1982, 1987, 2001) offered guidelines for
optimizing the map parameter L where L > 0 is the scaling parameter. Numerical results
depend smoothly on constant parameter L, and therefore are not very sensitive to L
because the dError=dL ¼ 0 at the minimum itself, so the error varies very slowly with L
around the minimum. A little trial and error is usually sufficient to find a value that is
nearly optimum. In general, there is no way to avoid a small amount of trial and error in
choosing L when solving problems on an unbounded domain. Experience and the
asymptotic approximations of Boyd (1982) can help, but some experimentation is always
necessary as this author explains in his book Boyd (2001).

3.2 Function approximation
A function f(x) defined over the interval I ¼ [0,1) can be expanded as:

f ðxÞ ¼
X1
i¼0

ai�iðxÞ; ð14Þ

where,

ai ¼
h f ; �iiw
h�i; �iiw

: ð15Þ

If the infinite series in equation (14) is truncated with N terms, then it can be written as:

f ðxÞ ’
XN�1

i¼0

ai�iðxÞ ¼ AT�ðxÞ; ð16Þ
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with,

A ¼ ½a0; a1; a2; . . . ; aN�1�T ; ð17Þ

�ðxÞ ¼ ½�0ðxÞ; �1ðxÞ; . . . ; �N�1ðxÞ�T : ð18Þ

3.3 The derivative operational matrix
The derivative of the vector �(x) defined in equation (13) can be expressed as:

�0ðxÞ ¼ D�ðxÞ; ð19Þ

where D is the N � N operational matrix for derivative. By taking the derivative of
MGL functions we have the following relation:

d

dx
�x ¼ �

1

2L
expð�x=ð2LÞÞL�n ðx=LÞ þ expð�x=ð2LÞÞ d

dx
L�n ðx=LÞ: ð20Þ

Using equations (12) and (20) the matrix D can be expressed. The matrix D is a lower
triangular matrix with�1=2L entries on the main diagonal and entries below the main
diagonal are�1=L. For N ¼ 5 the matrix D is:

D ¼ �1

L

1=2 0 0 0 0
1 1=2 0 0 0
1 1 1=2 0 0
1 1 1 1=2 0
1 1 1 1 1=2

0
BBBB@

1
CCCCA ð21Þ

3.4 The product operational matrix
The product of two MGL functions vectors defined in equations (13) can be expressed
as:

�ðxÞ�TðxÞA ’ ~AA�ðxÞ; ð22Þ

where ~AA is an N � N product operational matrix for the vector A. Using equation (22)
and the orthogonal property, the elements ~AAij, (i, j ¼ 0, . . . , N � 1) of the matrix ~AA can
be calculated from (Tajvidi, 2008):

~AAi;j ¼ L2 n!

�ðnþ 2Þ

� �XN�1

k¼0

akgijk; ð23Þ

where gijk is given by:

gijk ¼
ð1

0

�iðxÞ�jðxÞ�kðxÞwðxÞdx: ð24Þ
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4. Solving the Blasius equation
In this section, we use MGL functions to solve the Blasius equation. For using MGL
functions at first we multiply both sides of equation (7) by e�x/2 so we have:

e�x=2f 000 þ 1

2
e�x=2ff 00 ¼ 0: ð25Þ

We now express all terms in equation (25) by MGL functions as:

e�x=2 ¼
XN�1

i¼0

ei�iðxÞ ¼ ET�ðxÞ; ð26Þ

where E ¼ [1, 0, 0, . . . , 0]. From equations (16), (19), and (22) we can deduce the
following relations:

f ðjÞðxÞ ¼
XN�1

i¼0

ai�
ðjÞ
i ðxÞ ¼ ATDj�ðxÞ; j ¼ 1; 2; 3; ð27Þ

where Dj is the jth power of the matrix D given in equation (21).

e�x=2f 000ðxÞ ¼ ATD3�ðxÞ�TðxÞE ’ ATD3 ~EE�ðxÞ: ð28Þ

f ðxÞf 00ðxÞ ’ AT�ðxÞ�TðxÞD2TA: ð29Þ

If we set F ¼ D2TA, then equation (29) becomes:

f ðxÞf 00ðxÞ ’ AT�ðxÞ�TðxÞF ’ AT ~FF�ðxÞ; ð30Þ

f ð3ÞðxÞ ¼ ATD3�ðxÞ: ð31Þ

Using equations (26)-(31) we get:

e�x=2f ðxÞf 00ðxÞ ¼ AT ~FF�ðxÞ�TðxÞE ¼ AT ~FF ~EE�ðxÞ: ð32Þ

Using equations (28) and (32) the residual Res(x) for equation (25) can be written as:

ResðxÞ ¼ ATD3 ~EE þ 1

2
AT ~FF ~EE

� �
�ðxÞ: ð33Þ

As in a typical Tau method, we generate N � 2 algebraic equations by applying:

hResðxÞ; �iðxÞi ¼ 0; ði ¼ 0; . . . ;N � 3Þ; ð34Þ
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and from equation (9) we get:

yð0Þ ¼ AT�ð0Þ ¼ 0; y0ð0Þ ¼ ATD�ð0Þ ¼ 0: ð35Þ

Equation (34) with equation (35) generate a set of N nonlinear algebraic equations, that
can be solved by Newton method for unknown coefficients aj.

As mentioned before, the second derivative of � ¼ f 00(�) at zero plays an important
role in the function. A high accurate numerical solution of Blasius equation has been
provided by Howarth (1935), who obtained the initial slope � ¼ f 00(0) ¼ 0.332057. By
homotopy perturbation method, He (1998, 2003) obtained the first iteration step led to
0.3095 with 6.8 percent accuracy (relative error), and the second iteration step yielded
0.3296 with 0.73 percent accuracy of the initial slope. Abbasbandy (2007) used the ADM
and obtained � ¼ f 00(0) ¼ 0.333329 with 0.383 percent accuracy of the initial slope, also
Tajvidi et al. (2008) calculated � ¼ f 00(0) ¼ 0.33209 with 0.009 percent accuracy.
Howarth (1935) also obtained f 0(1) ¼ 0.32979 and f(0) ¼ 0.16557. He (1998) obtained
these with relative errors 16.68 and 6.32 percent, respectively. The approximations of
f 00(0), f 0(1), f(1) obtained by the method of the current paper show that our results are
accurate. Table I gives odd coefficients in equation (16) with � ¼ 1 to evaluate f and
its derivatives with an absolute error that is less than 10�6 for 21 terms.

In Table II, the resulting values of f(1), f 0(1) together with L and relative error which
is less than 10�6 using the present method with N ¼ 7, 9, 11, 15, 19 and � ¼ 1 are
presented, respectively.

The approximations of the @ ¼ f 0(0) obtained by this method and their relative
error which is defined as ðj@present method � @Asaithambij=j@AsaithambijÞ with respect to the
Asaithambi’s (2005) results are listed in Table III.

Table IV, shows approximation of f(�) for the present method with � ¼ 0.5, 0.8, 1,
1.3, 1.5, it seems that � ¼ 1 is the best choice. Tables V, VI, and VII show the numerical
values of f, f 0, and f 00 using the present method with � ¼ 1 and those of Rafael (2005)
and Howarth (1935), respectively.

Table I.
The first odd coefficients
of equation (7)

i ai i ai

1 �1.123266292 13 �0.601874643E-4
3 0.983562976 15 0.42563546E-4
5 0.600965834 17 0.30067346E-4
7 �0.868982362E-2 19 �0.10012338E-5
9 0.138346295E-3 21 �0.5123563E-5
11 0.816453738E-3 23 0.2342642E-6

Table II.
The resulting values of
@ ¼ f(1), f 0(1) for � ¼ 1
together with L and
relative errors (%) using
the present method

N L f(1) error (%)f f0(1) error (%)f
0

7 0.79 0.16547 0.06 0.32853 0.38
9 0.81 0.16550 0.04 0.32959 0.06
11 0.82 0.16552 0.03 0.32966 0.03
15 0.85 0.16554 0.01 0.32970 0.02
19 0.88 0.16557 0.00 0.32979 0.00
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Figure 1 shows the resulting graph of Blasius (f, f 0) for N ¼ 6, � ¼ 1, and L ¼ 1. Figure
2 shows the convergence rate for f is remarkably fast; a21 is smaller than a1 by roughly
10�6 (Boyd, 1999). Figure 3 shows logarithmic error of @ ¼ f 00ð0Þðj@present method�
@AsaithambijÞ vs N (number of terms) with respect to the Asaithambi’s (2005) results for
N ¼ 21 and � ¼ 1.

Table IV.
Approximation of f(�) for
the present method with
� ¼ 0.5, 0.8, 1, 1.3, 1.5

� � ¼ 0.5 � ¼ 0.8 � ¼ 1 � ¼ 1.3 � ¼ 1.5

0.00 0.00000 0.00000 0.00000 0.00000 0.00000
1.00 0.16558 0.16558 0.16557 0.16557 0.16559
2.00 0.65009 0.65007 0.65003 0.65003 0.65002
3.00 1.39685 1.39684 1.39682 1.39679 1.39676
4.00 2.30582 2.30581 2.30576 2.30574 2.30563
5.00 3.28331 3.28331 3.28329 3.28326 3.28326
6.00 4.27965 4.27966 4.27964 4.27963 4.27962
7.00 5.27927 5.27929 5.27926 5.27926 5.27924
8.00 6.27930 6.27931 6.27923 6.27923 6.27921
9.006 7.27931 7.27932 7.27923 7.27922 7.27921

Note: n¼ 21 terms

Table III.
Approximations of

@ ¼ f 00(0)

Present method Liao (1999)
Pahlavan and

Boroujeni (2008)
N L � Relative error (%) Order @ Order @

7 0.79 0.332064634 0.002 5 0.28098 4 0.327531
9 0.82 0.332059633 0.0007 10 0.32992 6 0.330855
11 0.89 0.332058638 0.0003 15 0.33164 8 0.331503
15 0.98 0.332057736 0.49E-5 20 0.33198 10 0.331807
21 1.00 0.332057524 0.15E-7

Notes: Approximations obtained by the present method and its relative error with Asaithambi’s
result (2005) and the methods used by Liao (1999) and Pahlavan and Boroujeni (2008)

Table V.
Approximation of f(�)

for the present method
with � ¼ 1, solutions

of Rafael (2005) and
Howarth (1935)

� Present method Rafael (2005) Solutions of Howarth (1935)

0.00 0.0000000 0.00000 0.00000
1.00 0.1655731 0.16557 0.16557
2.00 0.6500351 0.65003 0.65003
3.00 1.3968254 1.39682 1.39682
4.00 2.3057619 2.30576 2.30576
5.00 3.2832913 3.28330 3.28329
6.00 4.2796473 4.27965 4.27964
7.00 5.2792619 5.27927 5.27926
8.00 6.2792353 6.27923 6.27923
9.00 7.2792383 7.27925 7.27923

Note: n¼ 21 terms
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Figure 1.
Graph of the
approximations of f(�)
(dotted line) and f0(�)
(dashed-dotted line) for
Blasius equation obtained
by the present method

Table VII.
Approximation of f00(�)
for the present method,
solutions of Rafael
(2005) and Howarth
(1935)

� Present method Rafael (2005) Solutions of Howarth (1935)

0.00 0.3320542 0.33206 0.33206
1.00 0.3230174 0.32301 0.32301
2.00 0.2667514 0.26675 0.26675
3.00 0.1613615 0.16136 0.16136
4.00 0.0642426 0.06423 0.06424
5.00 0.0159142 0.01591 0.01591
6.00 0.0024067 0.00240 0.00240
7.00 0.0002228 0.00022 0.00022
8.00 0.0000100 0.00001 0.00001
9.00 0.0000000 0.00000 0.00000

Note: n¼ 21 terms

Table VI.
Approximation of f0(�)
for the present method,
solutions of Rafael
(2005) and Howarth
(1935)

� Present method Rafael (2005) Solutions of Howarth (1935)

0.00 0.0000000 0.00000 0.00000
1.00 0.3297956 0.32978 0.32979
2.00 0.6297737 0.62977 0.62977
3.00 0.8460586 0.84605 0.84605
4.00 0.9555253 0.95552 0.95552
5.00 0.9915583 0.99155 0.99155
6.00 0.9989882 0.99898 0.99898
7.00 0.9999272 0.99993 0.99992
8.00 1.0000000 1.00000 1.00000
9.00 1.0000000 1.00000 1.00000

Note: n¼ 21 terms
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5. Conclusions
In this paper, we considered the Blasius equation, which is a laminar viscous flow over a
semi-infinite flat plate. Blasius equation occurs in the study of laminar boundary-layer
problem for Newtonian fluids. The difficulty in this type of equations, due to the
existence of its boundary condition in infinity, is treated here. In the Blasius equation, the

Figure 2.
Absolute values of

coefficients of the MGL
function aj of the
Blasius function

Figure 3.
Logarithmic error

of @ ¼ f 00(0)
(|@present method � @Asaithamu)

vs N (number of terms)
with respect to

Asaithambi’s (2005)
results
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second derivative at zero is an important point of the function, so we have computed f00(0)
and have compared it with other results. The fundamental goal of this paper has
been to construct an approximation to the solution of nonlinear Blasius equation in a
semi-infinite interval. A set of orthogonal functions proposed to provide an effective but
simple way to improve the convergence of the solution by Tau method. Note that if the
results of the Blasius equation are more accurate, the energy equation (8) can be solved
with a high accuracy. The results are found to be in excellent agreement with the exact
solution. All of our computations verify that the proposed procedure offers an effective
tool for solving this nonlinear problem in fluid mechanics. It has been shown that the
present work with small N provides accurate solutions for the Blasius equations.
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